

1	Full-coverage 1 km daily ambient $PM_{2.5}$ and O_3 concentrations of China in
2	2005-2017 based on multi-variable random forest model
3	
4	Runmei Ma ^{1#} , Jie Ban ^{1#} , Qing Wang ^{1#} , Yayi Zhang ¹ , Yang Yang ² , Shenshen Li ³ ,
5	Wenjiao Shi ^{4, 5} , Tiantian Li ^{1*}
6	
7	¹ China CDC Key Laboratory of Environment and Population Health, National Institute of
8	Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021,
9	China
10	² Institute of Urban Meteorology, China Meteorological Administration, Beijing, 100089,
11	China
12	³ State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital
13	Earth, Chinese Academy of Sciences, Beijing, 100101, China
14	⁴ Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences
15	and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
16	⁵ College of Resources and Environment, University of Chinese Academy of Sciences,
17	Beijing 100049, China
18	
19	[#] Runmei Ma, Jie Ban and Qing Wang are the co-first authors.
20	* Corresponding author: E-mail: litiantian@nieh.chinacdc.cn

21 Abstract

22 The health risks of fine particulate matter ($PM_{2,5}$) and ambient ozone (O_3) have been 23 widely recognized in recent years. An accurate estimate of PM_{2.5} and O₃ exposures is important for supporting health risk analysis and environmental policy-making. The 24 25 aim of our study was to construct random forest models with high-performance, and estimate daily average PM2.5 concentration and O3 daily maximum 8h average 26 27 concentration (O₃-8hmax) of China in 2005-2017 at a spatial resolution of 1km×1km. 28 The model variables included meteorological variables, satellite data, chemical 29 transport model output, geographic variables and socioeconomic variables. Random 30 forest model based on ten-fold cross validation was established, and spatial and temporal validations were performed to evaluate the model performance. According 31 32 to our sample-based division method, the daily, monthly and yearly simulations of PM_{2.5} gave average model fitting R² values of 0.85, 0.88 and 0.90, respectively; these 33 R² values were 0.77, 0.77, and 0.69 for O₃-8hmax, respectively. The meteorological 34 variables and their lagged values can significantly affect both PM2.5 and O3-8hmax 35 36 simulations. During 2005-2017, PM2.5 exhibited an overall downward trend, while ambient O3 experienced an upward trend. Whilst the spatial patterns of PM2.5 and 37 O3-8hmax barely changed between 2005 and 2017, the temporal trend had spatial 38 39 characteristic. The dataset is accessible public to the at https://doi.org/10.5281/zenodo.4009308 (Ma et al., 2021), and the shared data set of 40 Tracking: Chinese Environmental Public Health CEPHT 41 (https://cepht.niehs.cn:8282/developSDS3.html). 42

43 1 Introduction

44 Air pollution is becoming a main concern of modern society due to various health risks. According to the latest Global Burden of Disease (GBD) report, air pollution 45 has caused approximately 6.67 million deaths (95% UI: 5.90-7.49 million), and 46 47 ranked fourth on the global list of death-related risk factors in 2019 (Health Effects Institute, 2020; Murray et al., 2020). Ambient fine particulate matter (PM2.5) and 48 49 ambient ozone (O_3) have been identified and proven to be related to many health 50 outcomes. China is known to be one of the countries with the most serious air 51 pollution in the world. Strict pollution control measures (including the Air Pollution 52 Prevention and Control Action Plan and three-year action plan to fight air pollution) were enacted by the Chinese government in order to control and reduce serious air 53 54 pollution since 2013. The implementation of these measures has resulted in a markable drop of emissions and PM2.5 concentration. Nonetheless, the occasional 55 haze and unsatisfactory O₃ pollution control effects in 2013-2017, as well as the short 56 development history of air quality monitoring network, have brought many 57 58 difficulties to accurately capture the temporal and spatial patterns of PM2.5 and O3 concentrations. Therefore, it is difficult to develop a complete decision-making basis 59 for handling air pollution. In addition, there are gaps in epidemiological studies 60 linking air pollutants to health outcomes, due to the lack of accurate measurements of 61 PM_{2.5} and ambient O₃ concentrations. To this end, an accurate estimate of PM_{2.5} and 62 O₃ exposures is essential to support health risk analysis and environmental 63 64 policy-making.

65

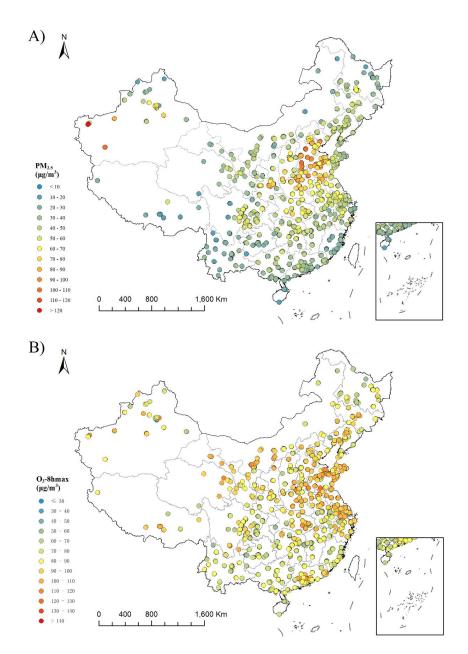
66 Suitable model variables and advanced simulation method are important to achieve accurate modeling. Basically, $PM_{2.5}$ is jointly affected by both natural conditions and 67 human activities over space and time, e.g., Aerosol Optical Depth (AOD), 68 69 meteorological conditions, geographic factors and human-related features (Wei et al., 2021). While O₃ is a secondary pollutant, which is produced by a series of complex 70 71 photochemical reactions on the basis of precursor including nitrogen oxides (NOx) 72 and volatile organic compounds (VOCs) under the action of high temperature and 73 strong radiation. These complex characteristic puts forward higher requirements on 74 the ability of the modeling method to handle multi-variable, and capture the non-linear relationships between variables and air pollutants. Many models have been 75 76 developed to simulate the spatiotemporal distribution of PM2.5 and O3 concentrations in China. Machine-learning approaches (e.g., random forest (RF), extreme gradient 77 boosting and deep belief network models) can mine useful information from a large 78 amount of input data and explore the nonlinear relationship, leading to a better 79 performance in modeling work(Chen et al., 2018, 2019; Di et al., 2017; Li et al., 2017; 80 Wei et al., 2019; Zhan et al., 2018). However, most of these simulation datasets 81 cannot balance long time series and high spatiotemporal resolution. Besides, there is 82 no long-term simulation dataset for both PM2.5 and O3 concentrations with high 83 temporal and spatial resolution for supporting epidemiological research. Therefore, by 84 incorporating multi-source data into random forest models, this study makes an 85 attempt to simulate the high-resolution ($1km \times 1km$) ambient PM_{2.5} and O₃ 86

87 concentrations of China in 2005-2017.

88

89 **2. Method**

The model variables of this study include meteorological variables, geographical 90 variables, socio-economic variables, satellite data and chemical transport model 91 92 output in 2013-2017. Daily average PM2.5 and O3 daily maximum 8h average concentration (O₃-8hmax) monitoring data of 1479 sites in 2013-2017 was obtained 93 (Fig. 1). A 1km×1km standard grid is created across the country (35.55° N to 43.12° 94 N, and 112.95° E to 120.35° E) with a total of 9495025 grid cells. The coordinate 95 system of the grid is WGS-84. We construct high-performance random forest (RF) 96 models (temporal resolution: daily; spatial resolution: 1km×1km), and simulate the 97 98 grid daily average PM2.5 concentration and O3-8hmax concentration of China in 2005-2017. 99



100

Fig.1 Station distribution in China and average ground monitoring concentration of PM_{2.5}
(A) and O₃-8hmax (B) from 2013 to 2017

103

104 2.1 Data set

105	The model variables used in this study mainly include Aqua AOD (Aerosol Optical
106	Depth) for $PM_{2.5}$ modeling, GEOS-Chem chemical transport model output for O_3
107	modeling, and some variables shared by PM _{2.5} and O ₃ : 13 meteorological variables
108	(includes boundary layer height, surface pressure, 2 meter dew point temperature,
109	evaporation, albedo, low cloud cover, medium cloud cover, high cloud cover, total
110	precipitation, 10 meter U wind component, 10 meter V wind component, 2 meter
111	surface temperature and surface solar radiation downwards) and its lag 1 and lag 2,
112	geographic and socio-economic variables, such as DEM (Digital Elevation Model),
113	NDVI (Normalized Difference Vegetation Index), population, GDP (Gross Domestic
114	Product), road network and dummy variables (includes season, month, and spatial
115	dummy variables, province). A more detailed description of the model variables is
116	given in Table S1. The processing method has been described in detail in our earlier
117	studies (Ma et al., 2021; Zhao et al., 2019). Briefly, most of the model variables are
118	processed into 1km×1km resolution based on the standard grid using interpolation
119	methods (such as inverse distance weighted and bilinear algorithm) in ArcGIS 10.2
120	and Python 2.7. For the long-term variables, the corresponding monthly and annual
121	level value is assigned to each day. Subsequent modeling work was carried out based
122	on the data set that covering monitoring data and all variables.

123

124 2.2 Random forest model

125 Random forest is an ensemble machine learning method consisting of many

126 individual decision trees growing from bagged data and its prediction is a vote result

127	of those trees (Breiman, 2001). The RF algorithm primarily integrates learning			
128	principles, trains several individual learners, and finally forms a strong learner			
129	through a certain combination strategy; through multiple rounds of training, multiple			
130	prediction results are obtained, and the final results are obtained after average			
131	aggregation.			
132				
133	The random forest models are established using the 10-fold cross validation method.			
134	First of all, this method randomly divides the modeling data set into 10 parts; then 9			
135	of them are used for modeling, the remaining one is used for simulation and be			
136	compared with observations. The verification is repeated until every part is predicted.			
137	In this way, the modeling and verification of simulation are repeated 10 times in total,			
138	and the average values of the 10 runs is took as the final result, i.e., the CV-R ² . The			
139	formulae of the models are as follows:			
140				
141	PM _{2.5i,j} = f(METE _{i,j} , lag1METE _{ij} , lag2METE _{i,j} , AOD _{i,j} , LD _j , ROAD _j , NDVI _j , ELE _j , GDP _j			
142	$POP_{j}, SEASON_{i}, MON_{i}, PRO_{j} $ (1)			
143	O ₃ -8hmax _{i,j} = f(METE _{i,j} , lag1METE _{ij} , lag2METE _{i,j} , GEOS _{i,j} , LD _j , ROAD _j , NDVI _j , ELE _j ,			
144	GDP _j , POP _j , SEASON _i , MON _i , PRO _j)			
145	(2)			
146				
147	where $PM_{2.5i,j}$ and $O_3\mbox{-}8hmax_{i,j}$ are the $PM_{2.5}$ and $O_3\mbox{-}8hmax$ concentrations on day i in			
148	grid cell j; METE $_{i,j}$ is 13 meteorological variables on day i in grid cell j, and lag 1			

149

values, respectively; GEOS i, i and AOD i, j are the GEOS-Chem model output and 150 AOD value on day i in grid cell j; LD i, ROAD i, NDVI i, ELE i, GDP i and POP i are 151 the land use coverage, length of a variety of roads, NDVI, elevation, GDP and 152 153 population in grid cell j, respectively; SEASON i, MON i and PRO j are the season and month of day i, and province of grid cell j, respectively. 154 155 In general, the random forest parameters that need to be adjusted include n estimators 156 157 (number of decision trees) and the max depth (maximum depth of the trees). Unlike the previous methods of manually adjusting parameters, the parameters of random 158 forest were optimized using GridSearchCV, which can realize cross-validated 159 160 grid-search over a parameter grid. After GridSearchCV, we set max depth as 36 and n estimators as 200 for PM2.5 modeling. For O3-8hmax modeling, we set max depth 161 162 as 54 and n estimators as 200. 163 164 2.3 Validation method To comprehensively verify the model performance, we construct the main models 165 using sample-based division method. Models using spatial-based and temporal-based 166 division method are further construct to test the model performance in spatial and 167

METE i,j and lag2 METE i,j represent corresponding one-day lag and two-day lag

- 168 temporal scale.
- 169

170 The data set was randomly divided into training set (90% of the records) and test set

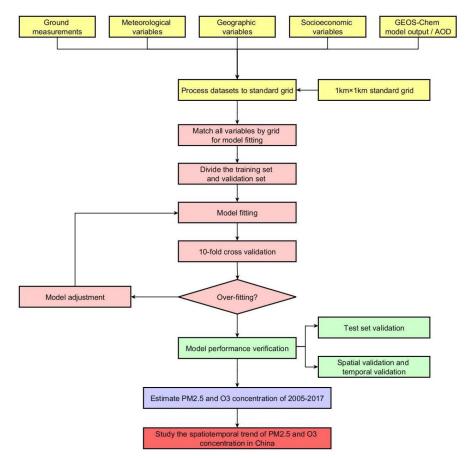
192

171	(10% of the records) by using the sample-based division method. We construct the
172	main model using the training set with a 10-fold cross-validation. Since the data in the
173	test set is not used in the main model, "true model performance" can be verified. The
174	coefficient of determination (R ²) of main model on test set (test-R ²), and the
175	verification indicators of model uncertainty, the root mean square error (RMSE) and
176	mean absolute error (MAE) are calculated for the $PM_{2.5}$ and O_3 -8hmax model,
177	respetively. The monthly and yearly R ² are also calculated.
178	
179	For the spatial verification, 90% of the monitoring stations are randomly selected. The
180	monitoring data of these stations is used as the training set, and the monitoring data of
181	remaining stations is used as the testing set. For the temporal verification, all date in
182	2013-2017 is randomly divided into nine and one, and the data in theses dates is used
183	as training and test sets, respectively. After that, the test-R ² , RMSE and MAE are
184	calculated.
185	
186	2.4 Simulation of daily $PM_{2.5}$ and ambient O_3 of China from 2005 to 2017
187	Based on the final models of PM _{2.5} and O ₃ -8hmax, we simulate the gridded daily
188	average PM _{2.5} concentration and O ₃ -8hmax concentration of China in 2005-2017. The
189	spatial pattern and temporal trend of PM _{2.5} and O ₃ -8hmax concentrations are analyzed,
190	and compared with other modeling products.
191	

10

The modeling and simulations are performed in Python 2.7.13 using the

- 193 scikit-learn-0.20.3 and GridSearchCV packages. The workflow of this study is
- 194 displayed in Fig. 2.



196 Fig. 2 The workflow of modeling process in the study

197

195

198 **3 Results and Discussion**

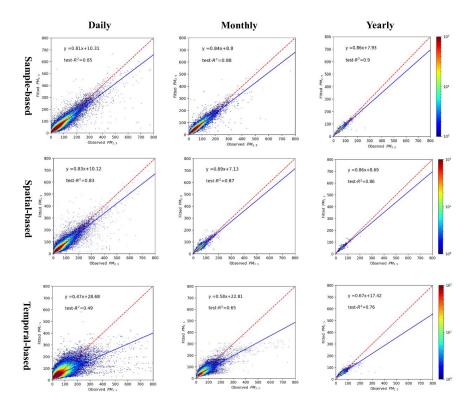
199 A total of 981744 monitoring data records were used in the final model-fitting data set.

- 200 The mean \pm standard deviation of PM_{2.5} and ambient O₃ concentrations in 2013-2017
- 201 were 59.60 \pm 45.85 $\mu g/m^3$ and 86.72 \pm 47.73 $\mu g/m^3$, respectively. The results of
- 202 descriptive analysis for variables included in PM_{2.5} and O₃-8hamx model is shown in

- 203 Table S2.
- 204

205 **3.1 Model fitting and validation**

- 206 The cross-validation results indicate that the simulated PM_{2.5} and O₃-8hmax
- 207 concentrations matched reasonably with the observed PM_{2.5} and O₃-8hmax
- 208 concentrations, with high fitted R² values. According to our sample-based division
- 209 method, the R^2 values of the simulated daily, monthly and yearly PM_{2.5} concentrations
- 210 were 0.85, 0.88 and 0.90, respectively (Fig. 3). Likewise, the R² values of the
- simulated daily, monthly and yearly O₃-8hmax concentrations were 0.77, 0.77 and
- 212 0.69, respectively (Fig. 4). The RMSE and MAE for PM_{2.5} in daily level were 17.72
- and 9.37 μ g/m³; for O₃-8hmax, the values were 23.10 and 15.43 μ g/m³. The model
- 214 performance is comparable to previous studies (Di et al., 2017; Li and Cheng, 2021;
- 215 Liu et al., 2020; Wei et al., 2021, 2020, 2019). At provincial/city level, PM_{2.5}
- 216 simulations of Shanghai, Beijing, Hubei, Hebei and Sichuan ranked the top 5 with
- 217 relatively high R² (≥0.90), while those of Tibet, Qinghai, Gansu, Anhui and Yunnan
- 218 were less accurate with relatively low R^2 values (<0.70). O₃-8hmax simulations of
- 219 Beijing, Chongqing, Shanghai, Tianjin and Henan ranked the top 5 with relatively
- 220 high R² values (≥0.83), while those of Gansu, Anhui, Heilongjiang, Guizhou and
- 221 Tibet were poorer with relatively low R^2 values (<0.62) (Table S3).

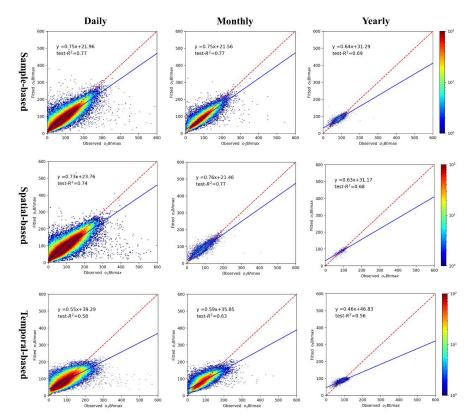


222 223

Fig. 3 The density plot of PM_{2.5} model

224 From left to right is different temporal scale: daily, monthly and yearly; From top to bottom is

225 different validation method: sample-based, spatial-based and temporal-based



226 227

Fig. 4 The density plot of O₃-8hmax model

From left to right is different temporal scale: daily, monthly and yearly; From top to bottom isdifferent validation method: sample-based, spatial-based and temporal-based

230

231 The spatial and temporal R^2 of models explained the uncertainty of the models to

some content (Fig. 3 and Fig. 4). The spatial R² values for daily, monthly and yearly

- 233 PM_{2.5} simulation were 0.83, 0.87 and 0.86, respectively; while those of daily, monthly
- and yearly O₃-8hmax simulations were 0.74, 0.77 and 0.68, respectively. The
- 235 relatively high performance demonstrates the reasonable performance of our models
- 236 in areas without monitoring stations. The temporal \mathbb{R}^2 values of daily, monthly and
- 237 yearly PM_{2.5} simulations were 0.49, 0.65 and 0.76, respectively; while those of daily,

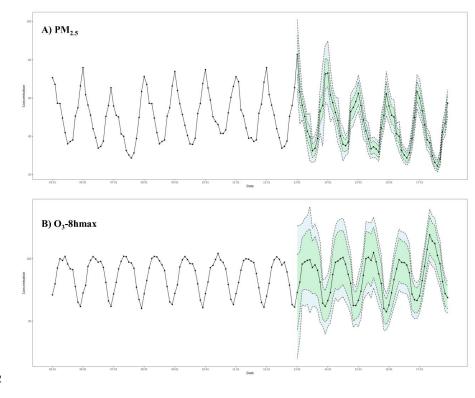
- 238 monthly and yearly O₃-8hmax simulations were 0.58, 0.63 and 0.56, respectively.
- 239 These results indicate the uncertainty of our models when modeling data in historical
- 240 period.
- 241
- 242 **3.2 Feature importance**
- 243 The feature importance of the variables in our random forest models is presented in
- Table S4-1 and S4-2. Similar to previous studies (Chen et al., 2018; Zhan et al., 2018),
- the meteorological factors and their lagged values can significantly affect both PM_{2.5}
- and O₃-8hmax modeling. Moreover, the specific features for PM_{2.5} and O₃, AOD and
- 247 GEOS-Chem output, also demonstrated high importance in modeling work.
- 248
- 249 For PM_{2.5} modeling work (Table S4-1), the meteorological variables (boundary layer
- 250 height, evaporation, 2 meter dewpoint temperature) and its lagged effect were among
- the top ten important factors, totaling 33.6% in modeling work. The lagged effects
- $252 \qquad \mbox{greatly contributed to $PM_{2.5}$ modeling. For example, the lag1 boundary layer height}$
- ranked first (17.2%) in our study, which is similar to previous studies (Zhao et al.,
- 254 2019). The interpolated AOD (5.6%), DEM (4.9%) and season (3.7%) also
- 255 demonstrated high importance, which showed crucial effects of satellite data, terrain
- 256 distribution characteristics in the study area, and study period on PM_{2.5} modeling. The
- 257 relative contribution of land-use, NDVI, population density, road length and GDP are
- negligible (the importance scores less than 1%). Unlike DEM, these factors are
- subjected to the influence of socioeconomic status in study area. In the future study,

- 260 the integration of these factors with a higher temporal resolution might change its
- 261 contribution to the simulation.
- 262
- The feature importance of ambient O₃ is consistent with its formation and dissipation 263 264 mechanism: surface solar radiation downwards and its lagged effect according for 38.07% in modeling work (Table S4-2). Other meteorological factors (2 meter 265 266 temperature, boundary layer height, 10 meter V wind component, and low cloud cover) 267 according for totaling 9.54% importance scores. Our analysis also suggests the high 268 importance of GEOS-Chem model (7.24%), altitude (1.88%), and dummy factors 269 including year (2.17%) and province (1.56%) in O₃ modeling. By contrast, the relative contribution of land-use, NDVI and road length are negligible (the importance scores 270 271 less than 1%). The high importance rank of population and GDP might be attributed to the relatively high sensitivity of O_3 to anthropogenic emission sources (compared 272 to PM_{2.5}). 273
- 274

275 3.3 The spatial characteristics and temporal trend of PM_{2.5} and ambient O₃ of

- 276 China from 2005 to 2017
- 277 During 2005-2017, PM_{2.5} showed an overall downward trend, while ambient O₃
- showed an upward trend in recent years (Fig. 5, Fig. S1 and Fig. S2). Relative to 2005,
- 279 $PM_{2.5}$ concentration has increased by 2.60 μ g/m³ in 2013. Nevertheless, after the
- 280 implementation of the Air Pollution Prevention and Control Action Plan, a strict
- 281 pollution control measure, $PM_{2.5}$ concentration has declined by 11.041 μ g/m³ in 2017

- 282 (relative to 2013). This has resulted in a downward trend of PM_{2.5} concentration in
- 283 2005-2017: PM_{2.5} concentration in 2017 has decreased by 8.44 μ g/m³ relative to 2005
- 284 (Fig. 5 and Fig. S1). For O₃-8hmax, upward barely changed. Relative to 2005,
- $_{285}$ O₃-8hmax concentrations in 2013 and 2017 have increased by 0.39 μ g/m³ and 7.83
- $\mu g/m^3$, respectively. The upward trend during 2005-2017 was mostly due to the
- significant changes between 2013 and 2017: relative to 2013, the O₃-8hmax
- concentration has increased by 7.44 μ g/m³ in 2017 (Fig. 5 and Fig. S2). During the
- 289 strict pollution control period, VOC emissions were not effectively controlled could
- 290 be one of the main reasons. Therefore, integrated management of VOCs and NOx in



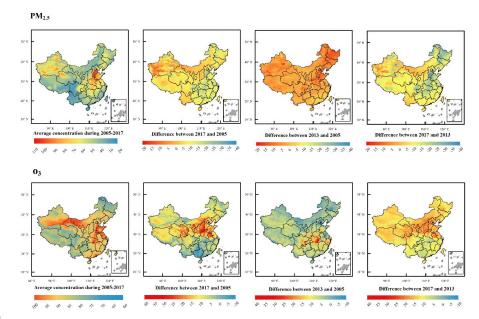
291 key industries and areas is important.

292

293 294 295 296 297 298 299	Fig.5 The temporal trend of PM_{2.5} and O₃-8hmax concentration in China from 2005-2017 The black dots represent the monthly average PM _{2.5} and O ₃ -8hmax concentration from 2005 to 2017, the blue color band represents the range of the monthly average PM _{2.5} and O ₃ -8hmax concentration plus or minus the RMSE value from 2013-2017 (period with monitoring data), and the green color band represents the range of the monthly average PM _{2.5} and O ₃ -8hmax concentration plus or minus the MAE value from 2013-2017 years.
300	The seasonal distributions of PM _{2.5} and O ₃ -8hmax concentrations were obvious
301	during 2005-2017 (Fig. S3 and Fig. S4). The lowest seasonal $PM_{2.5}$ concentration
302	occurred in summer, with an average concentration of $33.6 \pm 11.39 \mu g/m^3$; and the
303	highest seasonal $PM_{2.5}$ concentration occurred in winter, with an average
304	concentration of 57.4 \pm 21.76µg/m ³ . In winter, temperature inversion occurs frequently,
305	and the thickness of the mixed layer is low, which is not conducive to the diffusion of
306	pollutants, which leads to the accumulation of $PM_{2.5}$ near the ground (Sun et al, 2014).
307	In opposite, the lowest seasonal O ₃ -8hmax concentration was in winter, with an
308	average concentration of $72.65\pm6.28\mu g/m^3$; The highest seasonal O ₃ -8hmax
309	concentration was in summer, with an average concentration of $97.44\pm13.58\mu\text{g/m}^3$.
310	Temperatures and solar radiation conditions in summer increase the incidence of
311	severe O ₃ pollution events, which is consistent with its formation and dissipation
312	mechanism.
313	
314	The PM _{2.5} concentrations in Beijing-Tianjin-Hebei, Chengdu-Chongqing and Xinjiang
315	regions are higher than other regions, followed by the central China. The $PM_{2.5}$
316	concentrations in the southwestern regions (Yunnan and Tibet) and western part of
317	Sichuan Province, are the lowest, followed by the inner-north regions and the south
318	and southeastern regions (Fig. 6 and Fig. S1; Table S5). The O_3 -8hmax concentrations

18

- 319 in the Bohai Rim, Yangtze River Delta, Pearl River Delta and other economically
- 320 developed regions, southern Xinjiang, Inner Mongolia, and northeastern Gansu are
- 321 relatively high (Fig. 6 and Fig. S2; Table S5). This spatial pattern barely changed
- during 2005-2017 (Fig. S1 and Fig. S2), but the temporal trend showed spatial
- 323 characteristic (Fig. 6). For PM_{2.5} concentration, the above-mentioned key pollution
- areas were severely polluted during 2005-2013. The air pollution control measures of
- these regions were strict during 2013-2017, thus the decline was obvious. For
- 326 O₃-8hmax concentration, the growth rate was not obvious (except for the eastern part
- 327 of Hubei Province) during 2005-2013. However, after 2013, there was a clear upward
- 328 trend across the country, especially in the northern China.



329

Fig. 6 Simulated annual mean and difference of PM_{2.5} and O₃-8hmax concentration in China
 during 2005 to 2017

332 The first row is maps of PM_{2.5} related indicators, and the second row is maps of O₃-8hmax related

333 indicators. From left to right are average concentration during 2005-2017, the difference between

- 334 2017 and 2005, the difference between 2013 and 2005, and the difference between 2017 and 2013.
- 335

336	3.4 Evaluation	of the PM ₂	and O2 co	oncentration	nroducts with	ı comnarison	with
550	J.T Evaluation	of the I MI2	5 and O3 G	uncenti ation	products with	i comparison	** 1111

- 337 other products
- 338 Our simulation datasets include the $PM_{2.5}$ and O_3 -8hmax concentration data of China

in 2005-2017 with a spatial resolution of 1km×1km resolution. With high spatial and

- 340 temporal resolutions, our validation results are comparable with other modeling work
- 341 (see Table S6). Considering the future application in epidemiological research, our
- 342 simulation datasets would be useful: for acute effects studies, the high spatial
- 343 resolution would effectively reduce exposure errors; for chronic effects studies,
- 344 long-term exposure data is essential for the development of cohort studies.
- 345

346	Nevertheless, our simulation datasets also contain some limitations. First, we did not
347	use emission data in our model limited by coarse resolution. The high-resolution
348	emission inventory of China is made accessible to the public (http://meicmodel.org/)
349	and it can be utilized in future simulation studies to improve accuracy. Second, our
350	modeling still has spatial and temporal uncertainties. In areas where monitoring sites
351	are sparsely distributed, such as western China, it may be difficult to accurately
352	capture the association between air pollution concentrations and variables. The model
353	validation of historical period is also limited. Third, the interpolation process of model
354	features inevitably introduces some errors. Therefore, more high-quality and
355	high-resolution basic data would be needed in the future.

356

357 4 Data availability

- 358 The simulated PM_{2.5} and O₃ data are freely accessible at
- 359 <u>https://doi.org/10.5281/zenodo.4009308 (Ma et al., 2021)</u>, and the shared data set of
- 360 Chinese Environmental Public Health Tracking: CEPHT
- 361 (https://cepht.niehs.cn:8282/developSDS3.html).
- 362

363 **5 Conclusions**

- 364 We constructed random forest models for simulating of daily average PM_{2.5} and
- 365 O₃-8hmax concentrations of China during 2005-2017, with referential feature list and
- 366 comparable model performance. The simulation dataset would be useful for
- 367 supporting both long-term and short-term epidemiological studies. The model can be
- 368 further used for simulating daily concentrations of longer time period. The key
- 369 findings are summarized as follows. First, RF model proved its superiority in our
- 370 study and can be further used in the future simulation of air pollutant concentration.
- 371 Second, meteorological data is the most sensitive to PM_{2.5} and O₃ modeling. For
- 372 PM_{2.5} modeling work, boundary layer height, evaporation, 2 meter dewpoint
- 373 temperature and its lagged effects showed the highest sensitivity. For O₃ modeling
- 374 work, surface solar radiation downwards and its lagged effect were the most sensitive.
- 375 Third, PM_{2.5} concentration has trended downward in China, and the key polluted areas
- during 2005-2013 were effectively controlled during 2013-2017. O3 concentration has
- trended upward in China, especially in the northern China during 2013-2017.
- 378

379 Author Contribution

- 380 Runmei Ma, Jie Ban and Qing Wang: Software, Investigation, Validation, Formal
- 381 analysis, Data curation, Writing original draft. Yayi Zhang: Formal analysis,
- 382 Visualization. Yang Yang, Shenshen Li and Wenjiao Shi: Methodology, Writing -
- 383 Review & Editing. Tiantian Li: Conceptualization, Methodology, Writing Review &
- 384 Editing.
- 385

386 Competing Interests

- 387 The authors declare that they have no conflict of interest.
- 388

389 Acknowledgements

- 390 This work was funded by grants from National Natural Science Foundation of China
- 391 (Grant No. 92043301 and 42071433).
- 392

393 Reference

- Breiman, L., 2001. Random forest. Machine Learning 45, 5–32.
- Chen, G., Li, S., Knibbs, L.D., Hamm, N.A.S., Cao, W., Li, T., Guo, J., Ren, H.,
 Abramson, M.J., Guo, Y., 2018. A machine learning method to estimate
 PM2.5 concentrations across China with remote sensing, meteorological and
 land use information. Science of The Total Environment 636, 52–60.
 https://doi.org/10.1016/j.scitotenv.2018.04.251
- Chen, Z.-Y., Zhang, T.-H., Zhang, R., Zhu, Z.-M., Yang, J., Chen, P.-Y., Ou, C.-Q.,
 Guo, Y., 2019. Extreme gradient boosting model to estimate PM2.5
 concentrations with missing-filled satellite data in China. Atmospheric
 Environment 202, 180–189. https://doi.org/10.1016/j.atmosenv.2019.01.027
- 404 Di, Q., Rowland, S., Koutrakis, P., Schwartz, J., 2017. A hybrid model for spatially
 405 and temporally resolved ozone exposures in the continental United States.
 406 Journal of the Air & Waste Management Association 67, 39–52.
 407 https://doi.org/10.1080/10962247.2016.1200159

408	Health Effects Institute, 2020. State of Global Air 2020 28.
409	Li, T., Cheng, X., 2021. Estimating daily full-coverage surface ozone concentration
410	using satellite observations and a spatiotemporally embedded deep learning
411	approach. International Journal of Applied Earth Observation and
412	Geoinformation 101, 102356. https://doi.org/10.1016/j.jag.2021.102356
413	Li, T., Shen, H., Yuan, Q., Zhang, X., Zhang, L., 2017. Estimating Ground-Level PM
414	2.5 by Fusing Satellite and Station Observations: A Geo-Intelligent Deep
415	Learning Approach: Deep Learning for PM 2.5 Estimation. Geophys. Res. Lett.
416	44, 11,985-11,993. https://doi.org/10.1002/2017GL075710
417	Liu, R., Ma, Z., Liu, Y., Shao, Y., Zhao, W., Bi, J., 2020. Spatiotemporal distributions
418	of surface ozone levels in China from 2005 to 2017: A machine learning
419	approach. Environment International 142, 105823.
420	https://doi.org/10.1016/j.envint.2020.105823
421	Ma, R., Ban, J., Wang, Q., Zhang, Y., Li, T., 2021. Full-coverage 1 km daily ambient
422	PM2.5 and O3 concentrations of China in 2005-2017 based on multi-variable
423	random forest model.
424	Ma, R., Ban, J., Wang, Q., Zhang, Y., Li, T., 2021. Random Forest Model based Fine
425	Scale Spatiotemporal O3 Trends in the Beijing-Tianjin-Hebei region in China,
426	2010 to 2017. Environmental Pollution 116635.
427	Murray, C.J.L., Aravkin, A.Y., Zheng, P., Abbafati, C., Abbas, K.M.,
428	Abbasi-Kangevari, M., Abd-Allah, F., Abdelalim, A., Abdollahi, M.,
429	Abdollahpour, I., Abegaz, K.H., Abolhassani, H., Aboyans, V., Abreu, L.G.,
430	Abrigo, M.R.M., Abualhasan, A., Abu-Raddad, L.J., Abushouk, A.I., Adabi,
431	M., Adekanmbi, V., Adeoye, A.M., Adetokunboh, O.O., Adham, D., Advani,
432	S.M., Agarwal, G., Aghamir, S.M.K., Agrawal, A., Ahmad, T., Ahmadi, K.,
433	Ahmadi, M., Ahmadieh, H., Ahmed, M.B., Akalu, T.Y., Akinyemi, R.O.,
434	Akinyemiju, T., Akombi, B., Akunna, C.J., Alahdab, F., Al-Aly, Z., Alam, K.,
435	Alam, S., Alam, T., Alanezi, F.M., Alanzi, T.M., Alemu, B. wassihun,
436	Alhabib, K.F., Ali, M., Ali, S., Alicandro, G., Alinia, C., Alipour, V., Alizade,
437	H., Aljunid, S.M., Alla, F., Allebeck, P., Almasi-Hashiani, A., Al-Mekhlafi,
438	H.M., Alonso, J., Altirkawi, K.A., Amini-Rarani, M., Amiri, F., Amugsi, D.A.,
439	Ancuceanu, R., Anderlini, D., Anderson, J.A., Andrei, C.L., Andrei, T., Angus,
440	C., Anjomshoa, M., Ansari, F., Ansari-Moghaddam, A., Antonazzo, I.C.,
441	Antonio, C.A.T., Antony, C.M., Antriyandarti, E., Anvari, D., Anwer, R., Appiah, S.C.Y., Arabloo, J., Arab-Zozani, M., Ariani, F., Armoon, B., Ärnlöv,
442	J., Arzani, A., Asadi-Aliabadi, M., Asadi-Pooya, A.A., Ashbaugh, C., Assmus,
443	
444	M., Atafar, Z., Atnafu, D.D., Atout, M.M.W., Ausloos, F., Ausloos, M., Ayala
445 446	Quintanilla, B.P., Ayano, G., Ayanore, M.A., Azari, S., Azarian, G., Azene, Z.N. Badawi, A. Badiye, A.D. Bahrami, M.A. Bakhshaei, M.H. Bakhtiari
446 447	Z.N., Badawi, A., Badiye, A.D., Bahrami, M.A., Bakhshaei, M.H., Bakhtiari, A., Bakkannavar, S.M., Baldasseroni, A., Ball, K., Ballew, S.H., Balzi, D.,
447	Banach, M., Banerjee, S.K., Bante, A.B., Baraki, A.G., Barker-Collo, S.L.,
448 449	Bärnighausen, T.W., Barrero, L.H., Barthelemy, C.M., Barua, L., Basu, S.,
450	Baune, B.T., Bayati, M., Becker, J.S., Bedi, N., Beghi, E., Béjot, Y., Bell,
451	M.L., Bennitt, F.B., Bensenor, I.M., Berhe, K., Berman, A.E., Bhagavathula,
тJ1	m.L., Bennut, T.D., Bensenor, Invi., Benne, K., Bennan, A.E., Bhagavanuna,

452 A.S., Bhageerathy, R., Bhala, N., Bhandari, D., Bhattacharyya, K., Bhutta, 453 Z.A., Bijani, A., Bikbov, B., Bin Sayeed, M.S., Biondi, A., Birihane, B.M., Bisignano, C., Biswas, R.K., Bitew, H., Bohlouli, S., Bohluli, M., 454 Boon-Dooley, A.S., Borges, G., Borzì, A.M., Borzouei, S., Bosetti, C., 455 Boufous, S., Braithwaite, D., Breitborde, N.J.K., Breitner, S., Brenner, H., 456 Briant, P.S., Briko, A.N., Briko, N.I., Britton, G.B., Bryazka, D., Bumgarner, 457 B.R., Burkart, K., Burnett, R.T., Burugina Nagaraja, S., Butt, Z.A., Caetano 458 459 dos Santos, F.L., Cahill, L.E., Cámera, L.L.A., Campos-Nonato, I.R., Cárdenas, R., Carreras, G., Carrero, J.J., Carvalho, F., Castaldelli-Maia, J.M., 460 Castañeda-Orjuela, C.A., Castelpietra, G., Castro, F., Causey, K., Cederroth, 461 C.R., Cercy, K.M., Cerin, E., Chandan, J.S., Chang, K.-L., Charlson, F.J., 462 Chattu, V.K., Chaturvedi, S., Cherbuin, N., Chimed-Ochir, O., Cho, D.Y., 463 464 Choi, J.-Y.J., Christensen, H., Chu, D.-T., Chung, M.T., Chung, S.-C., Cicuttini, F.M., Ciobanu, L.G., Cirillo, M., Classen, T.K.D., Cohen, A.J., 465 Compton, K., Cooper, O.R., Costa, V.M., Cousin, E., Cowden, R.G., Cross, 466 D.H., Cruz, J.A., Dahlawi, S.M.A., Damasceno, A.A.M., Damiani, G., 467 Dandona, L., Dandona, R., Dangel, W.J., Danielsson, A.-K., Dargan, P.I., 468 Darwesh, A.M., Daryani, A., Das, J.K., Das Gupta, R., das Neves, J., 469 470 Dávila-Cervantes, C.A., Davitoiu, D.V., De Leo, D., Degenhardt, L., DeLang, 471 M., Dellavalle, R.P., Demeke, F.M., Demoz, G.T., Demsie, D.G., 472 Denova-Gutiérrez, E., Dervenis, N., Dhungana, G.P., Dianatinasab, M., Dias 473 da Silva, D., Diaz, D., Dibaji Forooshani, Z.S., Djalalinia, S., Do, H.T., Dokova, K., Dorostkar, F., Doshmangir, L., Driscoll, T.R., Duncan, B.B., 474 Duraes, A.R., Eagan, A.W., Edvardsson, D., El Nahas, N., El Sayed, I., El 475 476 Tantawi, M., Elbarazi, I., Elgendy, I.Y., El-Jaafary, S.I., Elyazar, I.R., Emmons-Bell, S., Erskine, H.E., Eskandarieh, S., Esmaeilnejad, S., 477 Esteghamati, A., Estep, K., Etemadi, A., Etisso, A.E., Fanzo, J., Farahmand, 478 M., Fareed, M., Faridnia, R., Farioli, A., Faro, A., Faruque, M., Farzadfar, F., 479 Fattahi, N., Fazlzadeh, M., Feigin, V.L., Feldman, R., Fereshtehnejad, S.-M., 480 481 Fernandes, E., Ferrara, G., Ferrari, A.J., Ferreira, M.L., Filip, I., Fischer, F., 482 Fisher, J.L., Flor, L.S., Foigt, N.A., Folayan, M.O., Fomenkov, A.A., Force, 483 L.M., Foroutan, M., Franklin, R.C., Freitas, M., Fu, W., Fukumoto, T., 484 Furtado, J.M., Gad, M.M., Gakidou, E., Gallus, S., Garcia-Basteiro, A.L., Gardner, W.M., Geberemariyam, B.S., Gebreslassie, A.A.A.A., Geremew, A., 485 Gershberg Hayoon, A., Gething, P.W., Ghadimi, M., Ghadiri, K., Ghaffarifar, 486 F., Ghafourifard, M., Ghamari, F., Ghashghaee, A., Ghiasvand, H., Ghith, N., 487 Gholamian, A., Ghosh, R., Gill, P.S., Ginindza, T.G.G., Giussani, G., 488 Gnedovskaya, E.V., Goharinezhad, S., Gopalani, S.V., Gorini, G., Goudarzi, 489 H., Goulart, A.C., Greaves, F., Grivna, M., Grosso, G., Gubari, M.I.M., 490 Gugnani, H.C., Guimarães, R.A., Guled, R.A., Guo, G., Guo, Y., Gupta, R., 491 492 Gupta, T., Haddock, B., Hafezi-Nejad, N., Hafiz, A., Haj-Mirzaian, Arvin, 493 Haj-Mirzaian, Arya, Hall, B.J., Halvaei, I., Hamadeh, R.R., Hamidi, S., 494 Hammer, M.S., Hankey, G.J., Haririan, H., Haro, J.M., Hasaballah, A.I., 495 Hasan, M.M., Hasanpoor, E., Hashi, A., Hassanipour, S., Hassankhani, H.,

496 Havmoeller, R.J., Hay, S.I., Hayat, K., Heidari, G., Heidari-Soureshjani, R., Henrikson, H.J., Herbert, M.E., Herteliu, C., Heydarpour, F., Hird, T.R., Hoek, 497 H.W., Holla, R., Hoogar, P., Hosgood, H.D., Hossain, N., Hosseini, M., 498 Hosseinzadeh, M., Hostiuc, M., Hostiuc, S., Househ, M., Hsairi, M., Hsieh, 499 V.C., Hu, G., Hu, K., Huda, T.M., Humayun, A., Huynh, C.K., Hwang, B.-F., 500 Iannucci, V.C., Ibitoye, S.E., Ikeda, N., Ikuta, K.S., Ilesanmi, O.S., Ilic, I.M., 501 Ilic, M.D., Inbaraj, L.R., Ippolito, H., Iqbal, U., Irvani, S.S.N., Irvine, C.M.S., 502 503 Islam, M.M., Islam, S.M.S., Iso, H., Ivers, R.Q., Iwu, C.C.D., Iwu, C.J., Iyamu, 504 I.O., Jaafari, J., Jacobsen, K.H., Jafari, H., Jafarinia, M., Jahani, M.A., Jakovljevic, M., Jalilian, F., James, S.L., Janjani, H., Javaheri, T., Javidnia, J., 505 Jeemon, P., Jenabi, E., Jha, R.P., Jha, V., Ji, J.S., Johansson, L., John, O., 506 John-Akinola, Y.O., Johnson, C.O., Jonas, J.B., Joukar, F., Jozwiak, J.J., 507 508 Jürisson, M., Kabir, A., Kabir, Z., Kalani, H., Kalani, R., Kalankesh, L.R., Kalhor, R., Kanchan, T., Kapoor, N., Karami Matin, B., Karch, A., Karim, 509 M.A., Kassa, G.M., Katikireddi, S.V., Kayode, G.A., Kazemi Karyani, A., 510 Keiyoro, P.N., Keller, C., Kemmer, L., Kendrick, P.J., Khalid, N., 511 Khammarnia, M., Khan, E.A., Khan, M., Khatab, K., Khater, M.M., Khatib, 512 513 M.N., Khayamzadeh, M., Khazaei, S., Kieling, C., Kim, Y.J., Kimokoti, R.W., 514 Kisa, A., Kisa, S., Kivimäki, M., Knibbs, L.D., Knudsen, A.K.S., Kocarnik, 515 J.M., Kochhar, S., Kopec, J.A., Korshunov, V.A., Koul, P.A., Koyanagi, A., 516 Kraemer, M.U.G., Krishan, K., Krohn, K.J., Kromhout, H., Kuate Defo, B., 517 Kumar, G.A., Kumar, V., Kurmi, O.P., Kusuma, D., La Vecchia, C., Lacey, B., Lal, D.K., Lalloo, R., Lallukka, T., Lami, F.H., Landires, I., Lang, J.J., Langan, 518 S.M., Larsson, A.O., Lasrado, S., Lauriola, P., Lazarus, J.V., Lee, P.H., Lee, 519 S.W.H., LeGrand, K.E., Leigh, J., Leonardi, M., Lescinsky, H., Leung, J., 520 Levi, M., Li, S., Lim, L.-L., Linn, S., Liu, Shiwei, Liu, Simin, Liu, Y., Lo, J., 521 Lopez, A.D., Lopez, J.C.F., Lopukhov, P.D., Lorkowski, S., Lotufo, P.A., Lu, 522 A., Lugo, A., Maddison, E.R., Mahasha, P.W., Mahdavi, M.M., Mahmoudi, 523 M., Majeed, A., Maleki, A., Maleki, S., Malekzadeh, R., Malta, D.C., Mamun, 524 525 A.A., Manda, A.L., Manguerra, H., Mansour-Ghanaei, F., Mansouri, B., Mansournia, M.A., Mantilla Herrera, A.M., Maravilla, J.C., Marks, A., Martin, 526 527 R.V., Martini, S., Martins-Melo, F.R., Masaka, A., Masoumi, S.Z., Mathur, 528 M.R., Matsushita, K., Maulik, P.K., McAlinden, C., McGrath, J.J., McKee, M., Mehndiratta, M.M., Mehri, F., Mehta, K.M., Memish, Z.A., Mendoza, W., 529 Menezes, R.G., Mengesha, E.W., Mereke, A., Mereta, S.T., Meretoja, A., 530 Meretoja, T.J., Mestrovic, T., Miazgowski, B., Miazgowski, T., Michalek, 531 I.M., Miller, T.R., Mills, E.J., Mini, G., Miri, M., Mirica, A., Mirrakhimov, 532 E.M., Mirzaei, H., Mirzaei, M., Mirzaei, R., Mirzaei-Alavijeh, M., Misganaw, 533 A.T., Mithra, P., Moazen, B., Mohammad, D.K., Mohammad, Y., Mohammad 534 Gholi Mezerji, N., Mohammadian-Hafshejani, A., Mohammadifard, N., 535 Mohammadpourhodki, R., Mohammed, A.S., Mohammed, H., Mohammed, 536 J.A., Mohammed, S., Mokdad, A.H., Molokhia, M., Monasta, L., Mooney, 537 M.D., Moradi, G., Moradi, M., Moradi-Lakeh, M., Moradzadeh, R., Moraga, 538 539 P., Morawska, L., Morgado-da-Costa, J., Morrison, S.D., Mosapour, A.,

540 Mosser, J.F., Mouodi, S., Mousavi, S.M., Mousavi Khaneghah, A., Mueller, U.O., Mukhopadhyay, S., Mullany, E.C., Musa, K.I., Muthupandian, S., 541 Nabhan, A.F., Naderi, M., Nagarajan, A.J., Nagel, G., Naghavi, M., 542 Naghshtabrizi, B., Naimzada, M.D., Najafi, F., Nangia, V., Nansseu, J.R., 543 Naserbakht, M., Nayak, V.C., Negoi, I., Ngunjiri, J.W., Nguyen, C.T., Nguyen, 544 H.L.T., Nguyen, M., Nigatu, Y.T., Nikbakhsh, R., Nixon, M.R., Nnaji, C.A., 545 Nomura, S., Norrving, B., Noubiap, J.J., Nowak, C., Nunez-Samudio, V., 546 Otoiu, A., Oancea, B., Odell, C.M., Ogbo, F.A., Oh, I.-H., Okunga, E.W., 547 Oladnabi, M., Olagunju, A.T., Olusanya, B.O., Olusanya, J.O., Omer, M.O., 548 Ong, K.L., Onwujekwe, O.E., Orpana, H.M., Ortiz, A., Osarenotor, O., Osei, 549 F.B., Ostroff, S.M., Otstavnov, N., Otstavnov, S.S., Øverland, S., Owolabi, 550 M.O., P A, M., Padubidri, J.R., Palladino, R., Panda-Jonas, S., Pandey, A., 551 552 Parry, C.D.H., Pasovic, M., Pasupula, D.K., Patel, S.K., Pathak, M., Patten, S.B., Patton, G.C., Pazoki Toroudi, H., Peden, A.E., Pennini, A., Pepito, 553 V.C.F., Peprah, E.K., Pereira, D.M., Pesudovs, K., Pham, H.Q., Phillips, M.R., 554 Piccinelli, C., Pilz, T.M., Piradov, M.A., Pirsaheb, M., Plass, D., Polinder, S., 555 Polkinghorne, K.R., Pond, C.D., Postma, M.J., Pourjafar, H., Pourmalek, F., 556 Poznańska, A., Prada, S.I., Prakash, V., Pribadi, D.R.A., Pupillo, E., Quazi 557 558 Syed, Z., Rabiee, M., Rabiee, N., Radfar, A., Rafiee, A., Raggi, A., Rahman, M.A., Rajabpour-Sanati, A., Rajati, F., Rakovac, I., Ram, P., Ramezanzadeh, 559 K., Ranabhat, C.L., Rao, P.C., Rao, S.J., Rashedi, V., Rathi, P., Rawaf, D.L., 560 561 Rawaf, S., Rawal, L., Rawassizadeh, R., Rawat, R., Razo, C., Redford, S.B., Reiner, R.C., Reitsma, M.B., Remuzzi, G., Renjith, V., Renzaho, A.M.N., 562 563 Resnikoff, S., Rezaei, Negar, Rezaei, Nima, Rezapour, A., Rhinehart, P.-A., Riahi, S.M., Ribeiro, D.C., Ribeiro, D., Rickard, J., Rivera, J.A., Roberts, 564 N.L.S., Rodríguez-Ramírez, S., Roever, L., Ronfani, L., Room, R., Roshandel, 565 G., Roth, G.A., Rothenbacher, D., Rubagotti, E., Rwegerera, G.M., Sabour, S., 566 Sachdev, P.S., Saddik, B., Sadeghi, E., Sadeghi, M., Saeedi, R., Saeedi 567 Moghaddam, S., Safari, Y., Safi, S., Safiri, S., Sagar, R., Sahebkar, A., Sajadi, 568 S.M., Salam, N., Salamati, P., Salem, H., Salem, M.R.R., Salimzadeh, H., 569 570 Salman, O.M., Salomon, J.A., Samad, Z., Samadi Kafil, H., Sambala, E.Z., 571 Samy, A.M., Sanabria, J., Sánchez-Pimienta, T.G., Santomauro, D.F., Santos, 572 I.S., Santos, J.V., Santric-Milicevic, M.M., Saraswathy, S.Y.I., Sarmiento-Suárez, R., Sarrafzadegan, N., Sartorius, B., Sarveazad, A., Sathian, 573 B., Sathish, T., Sattin, D., Saxena, S., Schaeffer, L.E., Schiavolin, S., Schlaich, 574 M.P., Schmidt, M.I., Schutte, A.E., Schwebel, D.C., Schwendicke, F., Senbeta, 575 A.M., Senthilkumaran, S., Sepanlou, S.G., Serdar, B., Serre, M.L., Shadid, J., 576 Shafaat, O., Shahabi, S., Shaheen, A.A., Shaikh, M.A., Shalash, A.S., 577 Shams-Beyranvand, M., Shamsizadeh, M., Sharafi, K., Sheikh, A., 578 Sheikhtaheri, A., Shibuya, K., Shield, K.D., Shigematsu, M., Shin, J.I., Shin, 579 M.-J., Shiri, R., Shirkoohi, R., Shuval, K., Siabani, S., Sierpinski, R., 580 Sigfusdottir, I.D., Sigurvinsdottir, R., Silva, J.P., Simpson, K.E., Singh, J.A., 581 Singh, P., Skiadaresi, E., Skou, S.T.S., Skryabin, V.Y., Smith, E.U.R., Soheili, 582 583 A., Soltani, S., Soofi, M., Sorensen, R.J.D., Soriano, J.B., Sorrie, M.B.,

584 Soshnikov, S., Soyiri, I.N., Spencer, C.N., Spotin, A., Sreeramareddy, C.T	
585 Srinivasan, V., Stanaway, J.D., Stein, C., Stein, D.J., Steiner, C., Stockfelt, I	
586 Stokes, M.A., Straif, K., Stubbs, J.L., Sufiyan, M.B., Suleria, H.A.R	
587 Suliankatchi Abdulkader, R., Sulo, G., Sultan, I., Szumowski, Ł	
588 Tabarés-Seisdedos, R., Tabb, K.M., Tabuchi, T., Taherkhani, A., Tajdini, M.	
589 Takahashi, K., Takala, J.S., Tamiru, A.T., Taveira, N., Tehrani-Banihashem	
590 A., Temsah, MH., Tesema, G.A., Tessema, Z.T., Thurston, G.D., Titov	-
591 M.V., Tohidinik, H.R., Tonelli, M., Topor-Madry, R., Topouzis, F., Torr	
592 A.E., Touvier, M., Tovani-Palone, M.R.R., Tran, B.X., Travillian, R	
593 Tsatsakis, A., Tudor Car, L., Tyrovolas, S., Uddin, R., Umeokonkwo, C.D	
594 Unnikrishnan, B., Upadhyay, E., Vacante, M., Valdez, P.R., van Donkelaa	
595 A., Vasankari, T.J., Vasseghian, Y., Veisani, Y., Venketasubramanian, N	
596 Violante, F.S., Vlassov, V., Vollset, S.E., Vos, T., Vukovic, R., Waheed, Y	
Wallin, M.T., Wang, Y., Wang, YP., Watson, A., Wei, J., Wei, M.Y.W	
598 Weintraub, R.G., Weiss, J., Werdecker, A., West, J.J., Westerman, R	
599 Whisnant, J.L., Whiteford, H.A., Wiens, K.E., Wolfe, C.D.A., Wozniak, S.S.	
600 Wu, AM., Wu, J., Wulf Hanson, S., Xu, G., Xu, R., Yadgir, S., Yahyazade	
601 Jabbari, S.H., Yamagishi, K., Yaminfirooz, M., Yano, Y., Yaya, S	
602 Yazdi-Feyzabadi, V., Yeheyis, T.Y., Yilgwan, C.S., Yilma, M.T., Yip, F	
603 Yonemoto, N., Younis, M.Z., Younker, T.P., Yousefi, B., Yousefi, Z	
604 Yousefinezhadi, T., Yousuf, A.Y., Yu, C., Yusefzadeh, H., Zahiria	
605 Moghadam, T., Zamani, M., Zamanian, M., Zandian, H., Zastrozhin, M.S	
606 Zhang, Y., Zhang, ZJ., Zhao, J.T., Zhao, XJ.G., Zhao, Y., Zhou, M	
607 Ziapour, A., Zimsen, S.R.M., Brauer, M., Afshin, A., Lim, S.S., 2020. Glob	al
608 burden of 87 risk factors in 204 countries and territories, 1990–2019:	a
609 systematic analysis for the Global Burden of Disease Study 2019. The Lanc	et
610 396, 1223–1249. https://doi.org/10.1016/S0140-6736(20)30752-2	
611 Wei, J., Huang, W., Li, Z., Xue, W., Peng, Y., Sun, L., Cribb, M., 2019. Estimatir	ıg
612 1-km-resolution PM2.5 concentrations across China using the space-tin	ne
613 random forest approach. Remote Sensing of Environment 231, 11122	1.
614 https://doi.org/10.1016/j.rse.2019.111221	
615 Wei, J., Li, Z., Cribb, M., Huang, W., Xue, W., Sun, L., Guo, J., Peng, Y., Li, J	í.,
616 Lyapustin, A., Liu, L., Wu, H., Song, Y., 2020. Improved 1 km resolution	m
617 PM _{2.5} estimates across China using enhance	ed
618 space-time extremely randomized trees. Atmos. Chem. Phys. 20, 3273–328	9.
619 https://doi.org/10.5194/acp-20-3273-2020	
620 Wei, J., Li, Z., Lyapustin, A., Sun, L., Peng, Y., Xue, W., Su, T., Cribb, M., 202	1.
621 Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000	
622 2018 in China: spatiotemporal variations and policy implications. Remo	te
623 Sensing of Environment 252, 11213	6.
624 https://doi.org/10.1016/j.rse.2020.112136	
625 Zhan, Y., Luo, Y., Deng, X., Grieneisen, M.L., Zhang, M., Di, B., 201	
626 Spatiotemporal prediction of daily ambient ozone levels across China usir	-
627 random forest for human exposure assessment. Environmental Pollution 23	3,

628	464-473. https://doi.org/10.1016/j.envpol.2017.10.029
629	Zhao, C., Wang, Q., Ban, J., Liu, Z., Li, T., 2019. Estimating the daily PM2.5
630	concentration in the Beijing-Tianjin-Hebei region using a random forest model
631	with a $0.01^{\circ} \times 0.01^{\circ}$ spatial resolution. Environment international 134,
632	105297.

633